
CheatSheet – R – Python – Julia – version 1 

 

 

Frederico Mestre 

 

 

 

 

 

 

 
 



Packages and Modules – A note on nomenclature. 

 R Python Julia Programming 
Package In R, packages are collections of 

functions, data, and other 
resources bundled together. 
Packages extend the functionality 
of the R language by providing 
additional functions and tools for 
specific tasks or domains. 

In Python, packages are 
directories that contain multiple 
modules and a special __init__.py 
file. Packages provide a way to 
organize related modules into a 
hierarchical structure. They 
enable you to create reusable code 
libraries and distribute them for 
others to use. 

Packages in Julia are collections 
of modules and other resources 
that are distributed and installed 
separately. They are commonly used 
to share and reuse code across 
different projects. The Julia 
package manager (Pkg) is used to 
manage packages and their 
dependencies. 

Module  A module is a file containing 
Python code that defines 
functions, classes, and 
variables. Modules are used for 
code organization and 
reusability. They allow you to 
logically group related code and 
make it accessible from other 
parts of your program using the 
import statement. 

a module is a container that 
organizes related code, 
variables, and types. It allows 
you to encapsulate functionality 
and control the visibility and 
scope of objects. Modules are used 
for code organization, avoiding 
naming conflicts and providing 
namespaces. 

Main 
repository 

The Comprehensive R Archive 
Network (CRAN) is the primary 
repository for R packages. 

The Python Package Index (PyPI) is 
the primary repository for Python 
packages, and the pip package 
manager is used to install and 
manage packages. 

The main package repository is the 
General Registry, which is managed 
by the Julia community. It serves 
as the central repository for 
Julia packages and is the primary 
source for discovering, 
installing, and managing packages 
in Julia. The General registry can 
be accessed through the Julia 
package manager (Pkg) using the 
add, update, and dev commands. 

 
 



IMPORTANT! - A note on indexing 

R Python Julia Programming 
Indexing in Python starts with 0. In R and Julia starts with 1. As such selecting the first element: 

my_vector <- c(10, 20, 30, 40, 50) 
# Accessing the first element 
first_element <- my_vector[1] 

my_list = [10, 20, 30, 40, 50] 
# Accessing the first element 
first_element = my_list[0] 

my_vector = [10, 20, 30, 40, 50] 
# Accessing the first element 
first_element = my_vector[1]  

 
 

Basic actions 

Action R Python Julia Programming 
Get working directory getwd() import os 

 
os.getcwd() 

pwd() 

Change working directory setwd() import os 
 

new_dir = 
"/path/to/new_dir" 
os.chdir(new_dir) 

new_dir = 
"/path/to/new_dir" 

 
cd(new_dir) 

Install packages install.packages("package") Installing packages with 
conda 

conda install package_name 
 

Installing packages with 
pip 

pip install package_name 
 

Note: When using Anaconda, 
it is recommended the use 

conda for package 
installation, as it can 

manage packages 
specifically built and 

Pkg.add(“package”) 



optimized for Anaconda 
environments. However, pip 

can still be used if a 
package is not available in 
the Anaconda repositories. 

Load packages library("package_name") import package_name using package_name 
Delete object rm() del() a=1 

 
#delete a 

a = nothing 
List all objects in the 

environment. 
ls() dir() #Not exactly the same 

thing as the R function 
varinfo() 

Free memory gc() -- GC.gc() 
 

 

 

 

 

 

 

 

 

 

 

 

 



The division of the following two tables stems from my R-centred mind… 

In R, there are two main concepts related to object-oriented programming: types and classes. Types: In R, every object 
has a type. The type of an object determines its behaviour and the operations that can be performed on it. Common 
types in R include numeric, character, logical, integer, and complex. Classes: In addition to types, R also supports 
classes, which provide a way to define custom object types with specific properties and behaviours. Classes are defined 
using the class() function, and objects of a specific class are referred to as instances of that class. 

 

Object types/classes 

 R Python Julia Programming 
Evaluate type typeof() 

 
R has 5 basic classes: 
 
numeric: Floating-point 
numbers (e.g., 3.14, -2.5). 
 
integer: Integer numbers (e.g., 
1, 2, -3). 
 
character: Represents strings 
of text (e.g., "Hello"). 
 
logical: Represents boolean 
values, either TRUE or FALSE. 
 
complex: Represents complex 
numbers with real and imaginary 
parts (e.g., 2 + 3i). 

type() 
 

int: Integers (e.g., 1, 2, -3). 
 
float: Floating-point numbers 
(e.g., 3.14, -2.5). 
 
complex: Complex numbers with 
real and imaginary parts (e.g., 
2 + 3j). 
 
bool: Represents the truth 
values True or False. 

typeof(x) 
 

Int: Integer type. 
 
Float64: 64-bit floating-point 
number type. 
 
Bool: Boolean type (true or 
false). 
 
Char: Character type. 
 
String: String type. 
 
Symbol: Symbol type 
(immutable, used for 
identifiers). 

logical/bool TRUE FALSE True False true false 
integer/int/Int64 2L, as.integer(2) 2 2 

double/float/ 
Float64 

2.5 2.5 2.5 



Complex 2 + 3i 2 + 3j z1 = complex(3, 4)  #Create a 
complex number with real part 
3 and imaginary part 4 
 
z2 = 2 + 5im  #Create a 
complex number using the 
shorthand syntax 

character/str/Char 
and string 

“a” “a” “a” #Char 
“abc” #String 

Numeric 2, 2.0, pi --  
Getting help on a 

function 
?function_name 
??function_name 

help(function_name) Press ? than the name of the 
function. 

 

 

Object types/classes 

Action R Python Julia Programming 
Evaluate 
class 

class() 
 

Date: Represents dates without 
time. 

POSIXct: Represents date and time 
using the POSIX standard. 

POSIXlt: Represents date and time 
using a list structure. 

 
vector: Represents a sequence of 

elements of the same type. 
factor: Represents categorical 
data with predefined levels. 

 
matrix: Represents a 2-

dimensional array-like structure. 
 

type() 
 

list: Ordered, mutable sequences 
(e.g., [1, 2, 3]). 

 
tuple: Ordered, immutable sequences 

(e.g., (1, 2, 3)). 
 

str: Strings, immutable sequences of 
characters (e.g., "Hello"). 

 
dict: Mutable mappings of keys to 
values (e.g., {"key": "value"}). 

 
set: Mutable, unordered collections 
of unique elements (e.g., {1, 2, 

3}). 
 

typeof(x) 
 

Primitive Types 
Tuple: Ordered, immutable 

collection of values. 
Array: Ordered, mutable 
collection of values. 

Dict: Associative 
collection of key-value 

pairs. 
Set: Collection of unique 

elements. 
These are the primitive 

types. Then there are other 
types, such as abstract 

types. 



array: Represents a multi-
dimensional array. 

 
data.frame: Represents a tabular 

data structure with rows and 
columns. 

 
list: Represents a collection of 

objects of different types. 

frozenset: Immutable sets (e.g., 
frozenset({1, 2, 3})). 

Data frames 
Definition Data Frames are data displayed in 

a format as a table. Items can 
have different types. 

Not defined in Python. Alternatives 
are lists of lists, lists of 
dictionaries or packages, such as 
pandas. 

Not defined in Julia. 
Alternatives are the 
packages DataFrames.jl and 
Tables.jl. 

Create data.frame(vect1, vect2) 

as.data.frame(matrix(ncol = 5, 
nrow = 10)) 

#Using the pandas library 
import pandas as pd 
 
# Create a data frame from a dictionary 
data = {'Name': ['Alice', 'Bob', 'Charlie'], 
        'Age': [25, 30, 35], 
        'City': ['New York', 'London', 
'Paris']} 
 
df = pd.DataFrame(data) 

-- 

Select 
elements 

Df1[line_number,column_number] # Select the element at row label 0 
and column label 'Name' 
 
df.loc[0, 'Name'] 

-- 

Number of 
columns 

ncol() # Get the number of columns using 
the shape attribute 
 
df.shape[1] 
 
# Alternatively, get the number of 
columns using the len() function on 
the columns attribute 
 
len(df.columns) 

-- 



Number of 
rows 

nrow() # Get the number of rows using the 
shape attribute 
 
df.shape[0] 
 
# Alternatively, get the number of 
rows using the len() function on the 
index attribute 
 
len(df.index) 

-- 

Dimensions dim() # Evaluate the dimensions of the data frame 
using the shape attribute 
 
num_rows, num_columns = df.shape 
print("Number of rows:", num_rows) 
 
print("Number of columns:", num_columns) 

-- 

Add column cbind() import pandas as pd 
 
# Create a sample data frame 
data = {'Name': ['Alice', 'Bob', 'Charlie'], 
        'Age': [25, 30, 35], 
        'City': ['New York', 'London', 
'Paris']} 
 
df = pd.DataFrame(data) 
 
# Add a new column to the data frame 
df['Gender'] = ['Female', 'Male', 'Male'] 

-- 

Remove 
column 

Df1[,-2] remove second column import pandas as pd 
 
# Create a sample data frame 
data = {'Name': ['Alice', 'Bob', 'Charlie'], 
        'Age': [25, 30, 35], 
        'City': ['New York', 'London', 
'Paris']} 
 
df = pd.DataFrame(data) 
 
# Remove the 'City' column from the data frame 
df = df.drop('City', axis=1) 

-- 

Add row rbind() import pandas as pd 
 
# Create a sample data frame 

-- 



data = {'Name': ['Alice', 'Bob'], 
        'Age': [25, 30], 
        'City': ['New York', 'London']} 
 
df = pd.DataFrame(data) 
 
# Create a new row as a dictionary 
new_row = {'Name': 'Charlie', 'Age': 35, 
'City': 'Paris'} 
 
# Append the new row to the data frame 
df = df.append(new_row, ignore_index=True) 

Remove row Df1[-1,] remove first line import pandas as pd 
 
# Create a sample data frame 
data = {'Name': ['Alice', 'Bob', 'Charlie'], 
        'Age': [25, 30, 35], 
        'City': ['New York', 'London', 
'Paris']} 
 
df = pd.DataFrame(data) 
 
# Remove the row at index 1 
df = df.drop(1) 

-- 

Matrices 
Definition A matrix is a two-dimensional data 

set with columns and rows and 
items of the same type. 

In Python, you can work with matrices 
using various libraries, with the most 
used one being NumPy. NumPy provides 
a powerful N-dimensional array object 
that can be used to represent matrices 
efficiently. 

A two-dimensional array 
storing elements of the same 
type. 

Create M1 <- matrix(ncol = 5, nrow = 10) import numpy as np 
 
# Create a matrix using a nested 
list 
 
M1 = np.array([[1, 2, 3], 
                    [4, 5, 6], 
                    [7, 8, 9]]) 

M1 = [1 0 2; 0 1 1] 



Select 
elements 

Accessing the element at row 2, 
column 3 
M1[2,3] 

import numpy as np 
 
matrix = np.array([[1, 2, 3], 
                   [4, 5, 6], 
                   [7, 8, 9]]) 
 
# Select the element at row index 1, 
column index 2 
element = matrix[1, 2] 

Accessing the element at 
row 2, column 3 

M1[2,3] 

Number of 
columns 

ncol() matrix.shape[1] The number of columns is 
the number of elements in 

the second dimension. 
 

size(M1, 2) 
Number of 

rows 
nrow() matrix.shape[0] The number of rows is the 

number of elements in the 
first dimension. 

 
size(M1, 1) 

Dimension dim() matrix1.shape size() 
Add column  import numpy as np 

 
m1 = np.array([[1, 2, 3], 
                   [4, 5, 6], 
                   [7, 8, 9]]) 
 
column = np.array([10, 11, 12]) 
 
# Add the column to the matrix 
M2 = np.hstack((m1, column.reshape(-
1, 1))) 
 
#The reshaping of the column using 
column.reshape(-1, 1) is necessary to 
ensure the dimensions match when 
concatenating the matrices. 

# Creating a matrix 
A = [1 2 3; 4 5 6; 7 8 9] 
 
# Creating a column vector 
col = [10, 11, 12] 
 
# Adding the column to the 
matrix 
B = hcat(A, col) 



Remove 
column 

# Removing the first column 
 
M1[,-1] 

np.delete(matrix, 1, axis=1) 
 

#The 1 in np.delete(matrix, 1, axis=1) 
specifies the index of the column to 
be removed, and axis=1 indicates that 
the operation is performed along the 
columns. 

# Creating a matrix 
A = [1 2 3; 4 5 6; 7 8 9] 
 
# Removing the second 
column 
B = A[:, [1, 3]] 

Add row  import numpy as np 
 
matrix = np.array([[1, 2, 3], 
                   [4, 5, 6], 
                   [7, 8, 9]]) 
 
row = np.array([10, 11, 12]) 
 
# Add the row to the matrix 
new_matrix = np.vstack((matrix, 
row)) 

# Creating a matrix 
A = [1 2 3; 4 5 6; 7 8 9] 
 
# Creating a row vector 
row = [10 11 12] 
 
# Adding the row to the 
matrix 
B = vcat(A, row) 

Remove row # Removing the first row 
 
M1[-1,] 

import numpy as np 
 
matrix = np.array([[1, 2, 3], 
                   [4, 5, 6], 
                   [7, 8, 9]]) 
 
# Delete the second row 
new_matrix = np.delete(matrix, 1, 
axis=0) 

# Creating a matrix 
A = [1 2 3; 4 5 6; 7 8 9] 
 
# Removing the second row 
B = A[[1, 3], :] 

Vectors 
Definition A vector is simply a list of items 

that are of the same type. 
Not defined in Python. Alternatives 
are lists or the NumPy library, which 
provides a powerful data structure for 
representing arrays and vectors in 
Python. 

In Julia, vectors are a 
particular type of array, a 
1-dimensional array. If the 
elements are of the same 
type, vectors are 
homogeneous. However, Julia 
also allows the creation of 
heterogeneous vectors. 

Create V1 <- c(1,2,3) # Creating a vector using a list #Homogeneous vector 



V1 = [1, 2, 3, 4, 5] 
 
# Using NumPy 
import numpy as np 
 
# Creating a vector using a NumPy 
array 
V2 = np.array([1, 2, 3, 4, 5]) 

V1 = [1, 2, 3, 4, 5] 
 

#Heterogeneous vector 
V2 = [1, 2.0, "three"] 

Length length(V1) -- length(V1) 
Select 

elements 
V1 <- c(1,2,3) 

 
#Selecting the second element 

V1[2] 

-- V1 = [1, 2, 3, 4, 5] 
 

#Selecting the second 
element 
V1[2] 

Concatenate c(vect1, vect2) -- vcat() 
Example 
# Creating vectors 
v1 = [1, 2, 3] 
v2 = [4, 5, 6] 
v3 = [7, 8, 9] 
 
v4 = vcat(v1, v2, v3) 

 
cat() 

Example 
# Creating vectors 
v1 = [1, 2, 3] 
v2 = [4, 5, 6] 
v3 = [7, 8, 9] 
 
v5 = cat(v1, v2, v3, 
dims=1) 
By using dims=1, we 
concatenate them 
horizontally along 
dimension 1 to create a 
single vector. 



Remove 
elements 

#Remove the third element 
V1[-3] 

-- #Create a sample 1-
dimensional array 

arr1 = ["John", "Paul", 
"Ringo", "George"] 
#Delete one element 
 
deleteat!(arr1, 2) 

Lists 
Definition A list can contain many different 

data types inside it. A list is a 
collection of data which is 

ordered and changeable. 

Lists are used to store multiple 
items in a single variable. 

 

In Julia, lists are known as 
arrays, and they provide a 
flexible and powerful way to 
store and manipulate 
collections of elements. 
Arrays in Julia can hold 
elements of any type, 
including numbers, strings, 
and even other arrays. 

Create lst1 <- list(TRUE, "hello", 
c(3,5,4)) 

 
lst2 <- vector(mode='list', 

length=10) 

lst1 = [1, 2, 3, 4, 5] -- 

Length length(lst1) len(my_list1) -- 
Select 

elements 
lst1[[element_position]] lst2 = [1, 2, 3, 4, 5] 

second_element = lst2[1] 
-- 

Add elements lst2 <- list(1, 2, 3) 
lst3 <- c(lst2, 4) 

lst3 = [1, 2, 3, 4, 5] 
lst3.append(6) 

-- 

Remove 
elements 

lst4 <- list(1, 2, 3, 4, 5) 
lst 5 <- lst4[-3] 

lst3 = [1, 2, 3, 4, 5] 
Lst3.remove(3) 

-- 

Join two lst1 <- list(value1, value2) 
lst2 <- list(value3, value4) 

c(lst1, lst2) 

lst4 = [1, 2, 3] 
lst5 = [4, 5, 6] 

lst6 = lst4 + lst5 

-- 

Arrays 



Definition Compared to matrices, arrays can 
have more than two dimensions. 

Not defined in Python. Alternatives 
are lists or the NumPy library, 
which provides a powerful data 

structure for representing arrays 
and vectors in Python. 

 
Additionally, Python has built-in 

support for arrays through the array 
module. It provides an array object 

that can be used to store 
homogeneous data efficiently. 

Vectors are 1-dimensional 
arrays, matrices are 2-

dimensional arrays. Julia 
has arrays rather than 

vectors and matrices/data 
frames. 

Creation #Creating a 3-dimensional array 
arr2 <- array(data = 1:24, dim = 
c(3, 4, 2)) 
 
# The dimensions refer to 3 rows, 
4 columns and 2 matrices. 

#Using numpy 
import numpy as np 
 
# Creating a 3-dimensional array 
arr2 = np.array([[[1, 2], [3, 4], [5, 6]], 
                [[7, 8], [9, 10], [11, 12]], 
                [[13, 14], [15, 16], [17, 
18]]]) 

arr1 = [1, 2, 3, 4, 5] 

Dimensions dim() import numpy as np 
 
# Creating a 3-dimensional array 
arr2 = np.array([[[1, 2], [3, 4], [5, 6]], 
                [[7, 8], [9, 10], [11, 12]], 
                [[13, 14], [15, 16], [17, 
18]]]) 
 
arr2.ndim 
 

size() 

Element 
selection 

# Creating a 3-dimensional array 
arr <- array(1:27, dim = c(3, 3, 
3)) 
 
# Selecting an element 
element <- arr[2, 3, 1] 

import numpy as np 
 
# Creating a 2-dimensional array 
arr = np.array([[1, 2, 3], 
                [4, 5, 6], 
                [7, 8, 9]]) 
 
# Selecting an element 
element = arr[1, 2] 

# Creating a 3-dimensional array 
arr = reshape(1:27, (3, 3, 3)) 
 
# Selecting an element 
element = arr[2, 3, 1] 

Dictionaries 



Definition Not defined in R. Alternatives 
are named lists. 

Dictionaries store data values in 
key:value pairs. 

 
A dictionary is ordered, changeable 

and does not allow duplicates. 

In Julia, dictionaries are a 
built-in data structure that 
allows you to store and 
retrieve key-value pairs. 
Dictionaries in Julia are 
called "Dict" and provide an 
efficient way to associate 
values with unique keys. 
 

Creation my_list <- list(name1 = value1, 
name2 = value2, name3 = value3) 

a = dict(one=1, two=2, three=3) 
 
b = {'one': 1, 'two': 2, 'three': 3} 

dt1 = Dict("key1" => 1, 
"key2" => 2, "key3" => 3) 

Select 
elements 

-- D1 = { 
  "name": "Michael", 
  "species": "dog", 
  "age": 5 
} 
D1["name"] 

dt1["key2"] 

Add elements -- D1 = { 
  "name": "Michael", 
  "species": "dog", 
  "age": 5 
} 
D1["colour"] = “brown” 

dt1["key4"] = 4 

Remove 
elements 

-- D1 = { 
  "name": "Michael", 
  "species": "dog", 
  "age": 5 
} 
thisdict.pop("species") 

 

pop!(dt1, "key2") 

Tuples 
Definition Not defined in R. Tuples are used to store multiple 

items in a single variable. A tuple 
In Julia, tuples are a 
built-in data structure that 
allows you to store an 
ordered collection of 



is a collection which is ordered and 
unchangeable. 

elements. Tuples are defined 
using parentheses () and are 
immutable, meaning their 
elements cannot be modified 
once created. 

Creation -- tp1 = ("a", "b", "c") tp1 = (value1, value2, 
value3) 

Select 
elements 

-- tp1 = (value1, value2, value3) 
 

#Select second element 
tp1[1] 

tp2 = (1, 3, 2) 
 

#Selecting the second 
element 
tp2[2] 

Add elements -- Not possible. Not possible. 
Remove 

elements 
-- Not possible. Not possible. 

Join two -- tl1 = ("a", "b", "c") 
tp2 = (1, 2, 3) 
 
tp3 = tp1 + tp2 

tp1 = (1, 2) 
tp2 = (3, 4) 

concatenated_tuple = 
tuple(tp1..., tp2...) 

 
#or 
 

(tp1..., tp2...) 
Methods -- count() Returns the number of times 

a specified value occurs in a tuple. 
 

index() Searches the tuple for a 
specified value, returning its 

position. 

-- 

 

 

 

 



Comparison/Relational operators 

R Python Julia Programming 
== equal to 
!= different from 
> greater than 
< smaller than 
>= greater or equal to 
<= smaller or equal to 

== equal to  
!= different from  
> greater than  
< smaller than  
>= greater than or equal to  
<= smaller than or equal to 

== equality 
!= inequality 
< less than 
<= less than or equal to 
> greater than 
>= greater than or equal to 

 

 

Assignment Operators 

R Python Julia Programming 
a <- 3 
 
a <<- 3 
 
a = 3 

                 Same as… 
= x = 5       x = 5  
+= x += 3 x = x + 3  
-= x -= 3 x = x - 3  
*= x *= 3 x = x * 3  
/= x /= 3 x = x / 3  
%= x %= 3 x = x % 3  
//= x //= 3 x = x // 3  
**= x **= 3 x = x ** 3  
&= x &= 3 x = x & 3  
|= x |= 3 x = x | 3  
^= x ^= 3 x = x ^ 3  
>>= x >>= 3 x = x >> 3  
<<= x <<= 3 x = x << 3 

a = 5 

 

 

 

 



Identity Operators 

R Python Julia Programming 
== (Equality): Tests if two objects 
have the same values. 
 
!= (Inequality): Tests if two objects 
have different values. 
 

is  Returns True if both variables 
are the same object. 
 
is not Returns True if both 
variables are not the same object.  

=== (Identity Equality): Tests if two 
objects or values have the same 
identity. 
 
!== (Identity Inequality): Tests if 
two objects or values have different 
identities. 

 

 

Membership Operators 

R Python Julia Programming 
%in% Find out if an element belongs 
to a vector. 

in  Returns True if a sequence with 
the specified value is present in the 
object. 
  
not in Returns True if a 
sequence with the specified value is 
not present in the object. 

in Tests if an element is present in 
a collection. 
 
!in Tests if an element is not 
present in a collection. 

 

 

 

 

 

 

 

 



Bitwise operators 

R Python Julia Programming 
-- &  AND Sets each bit to 1 if 

both bits are 1 x & y  
| OR Sets each bit to 1 if one 
of two bits is 1 x | y  
^ XOR Sets each bit to 1 if 
only one of two bits is 1 x ^ y  
~ NOT Inverts all the bits
 ~x  
<< Zero fill left shift Shift 
left by pushing zeros in from the 
right and let the leftmost bits fall 
off x << 2  
>> Signed right shift Shift 
right by pushing copies of the 
leftmost bit in from the left, and 
let the rightmost bits fall off x 
>> 2 

~x     bitwise not 
x & y     bitwise and 
x | y     bitwise or 
x ⊻ y     bitwise xor (exclusive or) 
x ⊼ y     bitwise nand (not and) 
x ⊽ y     bitwise nor (not or) 
x >>> y  logical shift right 
x >> y   arithmetic shift right 
x << y   logical/arithmetic shift 
left 

 

Logical operators 

R Python Julia Programming 
& AND – Vectorized version. 
Compares two vectors returning a 
vector of TRUE and FALSE. 

&& AND – Non-vectorized version. 
Compares the first value of each 
vector returning one logical value.  
| OR – Vectorized version. 
Compares two vectors returning a 
vector of TRUE and FALSE. 

and  Returns True if both statements 
are true. 
 
or Returns True if one of the 
statements is true. 
  
not Reverse the result, returns 
False if the result is true. 

!x       negation 
x && y  short-circuiting and 
x || y  short-circuiting or 



|| OR – Non-vectorized version. 
Compares the first value of each 
vector returning one logical value.  
! NOT - Returns a unique logical 
value or a vector of TRUE/FALSE. 
xor XOR - Returns the value TRUE if 
both entry values are different and 
returns FALSE if the values are 
equal. 
 

Arithmetic operators 

R Python Julia Programming 
+ Addition x + y  
- Subtraction x - y  
* Multiplication x * y  
/ Division x / y  
^ Exponent x ^ y  
%% Modulus (Remainder from 
division) x %% y  
%/% Integer Division x%/%y 

+ Addition x + y  
- Subtraction x - y  
* Multiplication x * y  
/ Division x / y  
% Modulus x % y  
** Exponentiation x ** y  
// Floor division x // y 

+x the identity operation 
-x maps values to their additive 
inverses 
x + y  performs addition 
x - y  performs subtraction 
x * y  performs multiplication 
x / y  performs division 
x ÷ y  divide x / y, truncated to 
an integer 
x \ y  equivalent to y / x 
x ^ y  raises x to the yth power 
x % y equivalent to rem(x,y) 

 

Create functions 

R Python Julia Programming 
f <- function(x, y) {  
  x + y 
} 

def f(x, y): 
  print(x + y) 

function f(x,y) 
           x + y 
       end 
f (generic function with 1 method) 
 
or… 
 



f(x,y) = x + y 
f (generic function with 1 method) 

 

Control Structures and Loops 

 R Python Julia Programming 
for for (i in 1:10) 

{ 
  statement 
} 

for iterator_var in sequence: 
    statements(s) 
 
Example: 
n = 4 
for i in range(0, n): 
    print(i) 

for iterator in range 
    statements(s) 
end 
 
Example: 
for i in 1:10 
    println(i) 
end 

while while (condition)  
{ 
  statement 
} 

while expression: 
    statement(s) 
 
Example: 
i = 1 
while i < 6: 
  print(i) 
  i += 1 

while condition 
    # Code block to be executed 
End 
 
Example: 
while i <= 3 
           println(i) 
           global i += 1 
       end 

Repeat repeat  
{  
   statement 
  
   if(condition)  
   { 
      break 
   } 
} 

-- -- 

If else if (condition) { 
  # Code block executed when 
condition is true 
} else { 

if condition: 
    # Code block executed when 
condition is true 
else: 

if condition 
    # Code block executed when 
condition is true 
else 



  # Code block executed when 
condition is false 
} 
 
Example: 
x <- 10 
 
if (x > 0) { 
  print("x is positive") 
} else if (x < 0) { 
  print("x is negative") 
} else { 
  print("x is zero") 
} 
 

    # Code block executed when 
condition is false 
 
Example: 
x = 10 
 
if x > 0: 
    print("x is positive") 
else: 
    print("x is non-positive") 

    # Code block executed when 
condition is false 
end 
 
Example: 
if x < y 
    println("x is less than y") 
elseif x > y 
    println("x is greater than 
y") 
else 
    println("x is equal to y") 
end 

 

Useful links 

R 

https://www.w3schools.com/r/default.asp  

Julia 

https://docs.julialang.org/en/v1/ 

https://www.datacamp.com/cheat-sheet/julia-basics-cheat-sheet 

https://cheatsheet.juliadocs.org/ 

https://julia.school/julia/  

 

Python 

https://www.w3schools.com/python/default.asp 

https://docs.python.org/3/contents.html 


