
CheatSheet – R – Python – Julia – version 1

Frederico Mestre

Packages and Modules – A note on nomenclature.

 R Python Julia Programming
Package In R, packages are collections of

functions, data, and other
resources bundled together.
Packages extend the functionality
of the R language by providing
additional functions and tools for
specific tasks or domains.

In Python, packages are
directories that contain multiple
modules and a special __init__.py
file. Packages provide a way to
organize related modules into a
hierarchical structure. They
enable you to create reusable code
libraries and distribute them for
others to use.

Packages in Julia are collections
of modules and other resources
that are distributed and installed
separately. They are commonly used
to share and reuse code across
different projects. The Julia
package manager (Pkg) is used to
manage packages and their
dependencies.

Module A module is a file containing
Python code that defines
functions, classes, and
variables. Modules are used for
code organization and
reusability. They allow you to
logically group related code and
make it accessible from other
parts of your program using the
import statement.

a module is a container that
organizes related code,
variables, and types. It allows
you to encapsulate functionality
and control the visibility and
scope of objects. Modules are used
for code organization, avoiding
naming conflicts and providing
namespaces.

Main
repository

The Comprehensive R Archive
Network (CRAN) is the primary
repository for R packages.

The Python Package Index (PyPI) is
the primary repository for Python
packages, and the pip package
manager is used to install and
manage packages.

The main package repository is the
General Registry, which is managed
by the Julia community. It serves
as the central repository for
Julia packages and is the primary
source for discovering,
installing, and managing packages
in Julia. The General registry can
be accessed through the Julia
package manager (Pkg) using the
add, update, and dev commands.

IMPORTANT! - A note on indexing

R Python Julia Programming
Indexing in Python starts with 0. In R and Julia starts with 1. As such selecting the first element:

my_vector <- c(10, 20, 30, 40, 50)
Accessing the first element
first_element <- my_vector[1]

my_list = [10, 20, 30, 40, 50]
Accessing the first element
first_element = my_list[0]

my_vector = [10, 20, 30, 40, 50]
Accessing the first element
first_element = my_vector[1]

Basic actions

Action R Python Julia Programming
Get working directory getwd() import os

os.getcwd()

pwd()

Change working directory setwd() import os

new_dir =
"/path/to/new_dir"
os.chdir(new_dir)

new_dir =
"/path/to/new_dir"

cd(new_dir)

Install packages install.packages("package") Installing packages with
conda

conda install package_name

Installing packages with
pip

pip install package_name

Note: When using Anaconda,
it is recommended the use

conda for package
installation, as it can

manage packages
specifically built and

Pkg.add(“package”)

optimized for Anaconda
environments. However, pip

can still be used if a
package is not available in
the Anaconda repositories.

Load packages library("package_name") import package_name using package_name
Delete object rm() del() a=1

#delete a

a = nothing
List all objects in the

environment.
ls() dir() #Not exactly the same

thing as the R function
varinfo()

Free memory gc() -- GC.gc()

The division of the following two tables stems from my R-centred mind…

In R, there are two main concepts related to object-oriented programming: types and classes. Types: In R, every object
has a type. The type of an object determines its behaviour and the operations that can be performed on it. Common
types in R include numeric, character, logical, integer, and complex. Classes: In addition to types, R also supports
classes, which provide a way to define custom object types with specific properties and behaviours. Classes are defined
using the class() function, and objects of a specific class are referred to as instances of that class.

Object types/classes

 R Python Julia Programming
Evaluate type typeof()

R has 5 basic classes:

numeric: Floating-point
numbers (e.g., 3.14, -2.5).

integer: Integer numbers (e.g.,
1, 2, -3).

character: Represents strings
of text (e.g., "Hello").

logical: Represents boolean
values, either TRUE or FALSE.

complex: Represents complex
numbers with real and imaginary
parts (e.g., 2 + 3i).

type()

int: Integers (e.g., 1, 2, -3).

float: Floating-point numbers
(e.g., 3.14, -2.5).

complex: Complex numbers with
real and imaginary parts (e.g.,
2 + 3j).

bool: Represents the truth
values True or False.

typeof(x)

Int: Integer type.

Float64: 64-bit floating-point
number type.

Bool: Boolean type (true or
false).

Char: Character type.

String: String type.

Symbol: Symbol type
(immutable, used for
identifiers).

logical/bool TRUE FALSE True False true false
integer/int/Int64 2L, as.integer(2) 2 2

double/float/
Float64

2.5 2.5 2.5

Complex 2 + 3i 2 + 3j z1 = complex(3, 4) #Create a
complex number with real part
3 and imaginary part 4

z2 = 2 + 5im #Create a
complex number using the
shorthand syntax

character/str/Char
and string

“a” “a” “a” #Char
“abc” #String

Numeric 2, 2.0, pi --
Getting help on a

function
?function_name
??function_name

help(function_name) Press ? than the name of the
function.

Object types/classes

Action R Python Julia Programming
Evaluate
class

class()

Date: Represents dates without
time.

POSIXct: Represents date and time
using the POSIX standard.

POSIXlt: Represents date and time
using a list structure.

vector: Represents a sequence of

elements of the same type.
factor: Represents categorical
data with predefined levels.

matrix: Represents a 2-

dimensional array-like structure.

type()

list: Ordered, mutable sequences
(e.g., [1, 2, 3]).

tuple: Ordered, immutable sequences

(e.g., (1, 2, 3)).

str: Strings, immutable sequences of
characters (e.g., "Hello").

dict: Mutable mappings of keys to
values (e.g., {"key": "value"}).

set: Mutable, unordered collections
of unique elements (e.g., {1, 2,

3}).

typeof(x)

Primitive Types
Tuple: Ordered, immutable

collection of values.
Array: Ordered, mutable
collection of values.

Dict: Associative
collection of key-value

pairs.
Set: Collection of unique

elements.
These are the primitive

types. Then there are other
types, such as abstract

types.

array: Represents a multi-
dimensional array.

data.frame: Represents a tabular

data structure with rows and
columns.

list: Represents a collection of

objects of different types.

frozenset: Immutable sets (e.g.,
frozenset({1, 2, 3})).

Data frames
Definition Data Frames are data displayed in

a format as a table. Items can
have different types.

Not defined in Python. Alternatives
are lists of lists, lists of
dictionaries or packages, such as
pandas.

Not defined in Julia.
Alternatives are the
packages DataFrames.jl and
Tables.jl.

Create data.frame(vect1, vect2)

as.data.frame(matrix(ncol = 5,
nrow = 10))

#Using the pandas library
import pandas as pd

Create a data frame from a dictionary
data = {'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['New York', 'London',
'Paris']}

df = pd.DataFrame(data)

--

Select
elements

Df1[line_number,column_number] # Select the element at row label 0
and column label 'Name'

df.loc[0, 'Name']

--

Number of
columns

ncol() # Get the number of columns using
the shape attribute

df.shape[1]

Alternatively, get the number of
columns using the len() function on
the columns attribute

len(df.columns)

--

Number of
rows

nrow() # Get the number of rows using the
shape attribute

df.shape[0]

Alternatively, get the number of
rows using the len() function on the
index attribute

len(df.index)

--

Dimensions dim() # Evaluate the dimensions of the data frame
using the shape attribute

num_rows, num_columns = df.shape
print("Number of rows:", num_rows)

print("Number of columns:", num_columns)

--

Add column cbind() import pandas as pd

Create a sample data frame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['New York', 'London',
'Paris']}

df = pd.DataFrame(data)

Add a new column to the data frame
df['Gender'] = ['Female', 'Male', 'Male']

--

Remove
column

Df1[,-2] remove second column import pandas as pd

Create a sample data frame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['New York', 'London',
'Paris']}

df = pd.DataFrame(data)

Remove the 'City' column from the data frame
df = df.drop('City', axis=1)

--

Add row rbind() import pandas as pd

Create a sample data frame

--

data = {'Name': ['Alice', 'Bob'],
 'Age': [25, 30],
 'City': ['New York', 'London']}

df = pd.DataFrame(data)

Create a new row as a dictionary
new_row = {'Name': 'Charlie', 'Age': 35,
'City': 'Paris'}

Append the new row to the data frame
df = df.append(new_row, ignore_index=True)

Remove row Df1[-1,] remove first line import pandas as pd

Create a sample data frame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['New York', 'London',
'Paris']}

df = pd.DataFrame(data)

Remove the row at index 1
df = df.drop(1)

--

Matrices
Definition A matrix is a two-dimensional data

set with columns and rows and
items of the same type.

In Python, you can work with matrices
using various libraries, with the most
used one being NumPy. NumPy provides
a powerful N-dimensional array object
that can be used to represent matrices
efficiently.

A two-dimensional array
storing elements of the same
type.

Create M1 <- matrix(ncol = 5, nrow = 10) import numpy as np

Create a matrix using a nested
list

M1 = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

M1 = [1 0 2; 0 1 1]

Select
elements

Accessing the element at row 2,
column 3
M1[2,3]

import numpy as np

matrix = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Select the element at row index 1,
column index 2
element = matrix[1, 2]

Accessing the element at
row 2, column 3

M1[2,3]

Number of
columns

ncol() matrix.shape[1] The number of columns is
the number of elements in

the second dimension.

size(M1, 2)
Number of

rows
nrow() matrix.shape[0] The number of rows is the

number of elements in the
first dimension.

size(M1, 1)

Dimension dim() matrix1.shape size()
Add column import numpy as np

m1 = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

column = np.array([10, 11, 12])

Add the column to the matrix
M2 = np.hstack((m1, column.reshape(-
1, 1)))

#The reshaping of the column using
column.reshape(-1, 1) is necessary to
ensure the dimensions match when
concatenating the matrices.

Creating a matrix
A = [1 2 3; 4 5 6; 7 8 9]

Creating a column vector
col = [10, 11, 12]

Adding the column to the
matrix
B = hcat(A, col)

Remove
column

Removing the first column

M1[,-1]

np.delete(matrix, 1, axis=1)

#The 1 in np.delete(matrix, 1, axis=1)
specifies the index of the column to
be removed, and axis=1 indicates that
the operation is performed along the
columns.

Creating a matrix
A = [1 2 3; 4 5 6; 7 8 9]

Removing the second
column
B = A[:, [1, 3]]

Add row import numpy as np

matrix = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

row = np.array([10, 11, 12])

Add the row to the matrix
new_matrix = np.vstack((matrix,
row))

Creating a matrix
A = [1 2 3; 4 5 6; 7 8 9]

Creating a row vector
row = [10 11 12]

Adding the row to the
matrix
B = vcat(A, row)

Remove row # Removing the first row

M1[-1,]

import numpy as np

matrix = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Delete the second row
new_matrix = np.delete(matrix, 1,
axis=0)

Creating a matrix
A = [1 2 3; 4 5 6; 7 8 9]

Removing the second row
B = A[[1, 3], :]

Vectors
Definition A vector is simply a list of items

that are of the same type.
Not defined in Python. Alternatives
are lists or the NumPy library, which
provides a powerful data structure for
representing arrays and vectors in
Python.

In Julia, vectors are a
particular type of array, a
1-dimensional array. If the
elements are of the same
type, vectors are
homogeneous. However, Julia
also allows the creation of
heterogeneous vectors.

Create V1 <- c(1,2,3) # Creating a vector using a list #Homogeneous vector

V1 = [1, 2, 3, 4, 5]

Using NumPy
import numpy as np

Creating a vector using a NumPy
array
V2 = np.array([1, 2, 3, 4, 5])

V1 = [1, 2, 3, 4, 5]

#Heterogeneous vector
V2 = [1, 2.0, "three"]

Length length(V1) -- length(V1)
Select

elements
V1 <- c(1,2,3)

#Selecting the second element

V1[2]

-- V1 = [1, 2, 3, 4, 5]

#Selecting the second
element
V1[2]

Concatenate c(vect1, vect2) -- vcat()
Example
Creating vectors
v1 = [1, 2, 3]
v2 = [4, 5, 6]
v3 = [7, 8, 9]

v4 = vcat(v1, v2, v3)

cat()

Example
Creating vectors
v1 = [1, 2, 3]
v2 = [4, 5, 6]
v3 = [7, 8, 9]

v5 = cat(v1, v2, v3,
dims=1)
By using dims=1, we
concatenate them
horizontally along
dimension 1 to create a
single vector.

Remove
elements

#Remove the third element
V1[-3]

-- #Create a sample 1-
dimensional array

arr1 = ["John", "Paul",
"Ringo", "George"]
#Delete one element

deleteat!(arr1, 2)

Lists
Definition A list can contain many different

data types inside it. A list is a
collection of data which is

ordered and changeable.

Lists are used to store multiple
items in a single variable.

In Julia, lists are known as
arrays, and they provide a
flexible and powerful way to
store and manipulate
collections of elements.
Arrays in Julia can hold
elements of any type,
including numbers, strings,
and even other arrays.

Create lst1 <- list(TRUE, "hello",
c(3,5,4))

lst2 <- vector(mode='list',

length=10)

lst1 = [1, 2, 3, 4, 5] --

Length length(lst1) len(my_list1) --
Select

elements
lst1[[element_position]] lst2 = [1, 2, 3, 4, 5]

second_element = lst2[1]
--

Add elements lst2 <- list(1, 2, 3)
lst3 <- c(lst2, 4)

lst3 = [1, 2, 3, 4, 5]
lst3.append(6)

--

Remove
elements

lst4 <- list(1, 2, 3, 4, 5)
lst 5 <- lst4[-3]

lst3 = [1, 2, 3, 4, 5]
Lst3.remove(3)

--

Join two lst1 <- list(value1, value2)
lst2 <- list(value3, value4)

c(lst1, lst2)

lst4 = [1, 2, 3]
lst5 = [4, 5, 6]

lst6 = lst4 + lst5

--

Arrays

Definition Compared to matrices, arrays can
have more than two dimensions.

Not defined in Python. Alternatives
are lists or the NumPy library,
which provides a powerful data

structure for representing arrays
and vectors in Python.

Additionally, Python has built-in

support for arrays through the array
module. It provides an array object

that can be used to store
homogeneous data efficiently.

Vectors are 1-dimensional
arrays, matrices are 2-

dimensional arrays. Julia
has arrays rather than

vectors and matrices/data
frames.

Creation #Creating a 3-dimensional array
arr2 <- array(data = 1:24, dim =
c(3, 4, 2))

The dimensions refer to 3 rows,
4 columns and 2 matrices.

#Using numpy
import numpy as np

Creating a 3-dimensional array
arr2 = np.array([[[1, 2], [3, 4], [5, 6]],
 [[7, 8], [9, 10], [11, 12]],
 [[13, 14], [15, 16], [17,
18]]])

arr1 = [1, 2, 3, 4, 5]

Dimensions dim() import numpy as np

Creating a 3-dimensional array
arr2 = np.array([[[1, 2], [3, 4], [5, 6]],
 [[7, 8], [9, 10], [11, 12]],
 [[13, 14], [15, 16], [17,
18]]])

arr2.ndim

size()

Element
selection

Creating a 3-dimensional array
arr <- array(1:27, dim = c(3, 3,
3))

Selecting an element
element <- arr[2, 3, 1]

import numpy as np

Creating a 2-dimensional array
arr = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Selecting an element
element = arr[1, 2]

Creating a 3-dimensional array
arr = reshape(1:27, (3, 3, 3))

Selecting an element
element = arr[2, 3, 1]

Dictionaries

Definition Not defined in R. Alternatives
are named lists.

Dictionaries store data values in
key:value pairs.

A dictionary is ordered, changeable

and does not allow duplicates.

In Julia, dictionaries are a
built-in data structure that
allows you to store and
retrieve key-value pairs.
Dictionaries in Julia are
called "Dict" and provide an
efficient way to associate
values with unique keys.

Creation my_list <- list(name1 = value1,
name2 = value2, name3 = value3)

a = dict(one=1, two=2, three=3)

b = {'one': 1, 'two': 2, 'three': 3}

dt1 = Dict("key1" => 1,
"key2" => 2, "key3" => 3)

Select
elements

-- D1 = {
 "name": "Michael",
 "species": "dog",
 "age": 5
}
D1["name"]

dt1["key2"]

Add elements -- D1 = {
 "name": "Michael",
 "species": "dog",
 "age": 5
}
D1["colour"] = “brown”

dt1["key4"] = 4

Remove
elements

-- D1 = {
 "name": "Michael",
 "species": "dog",
 "age": 5
}
thisdict.pop("species")

pop!(dt1, "key2")

Tuples
Definition Not defined in R. Tuples are used to store multiple

items in a single variable. A tuple
In Julia, tuples are a
built-in data structure that
allows you to store an
ordered collection of

is a collection which is ordered and
unchangeable.

elements. Tuples are defined
using parentheses () and are
immutable, meaning their
elements cannot be modified
once created.

Creation -- tp1 = ("a", "b", "c") tp1 = (value1, value2,
value3)

Select
elements

-- tp1 = (value1, value2, value3)

#Select second element
tp1[1]

tp2 = (1, 3, 2)

#Selecting the second
element
tp2[2]

Add elements -- Not possible. Not possible.
Remove

elements
-- Not possible. Not possible.

Join two -- tl1 = ("a", "b", "c")
tp2 = (1, 2, 3)

tp3 = tp1 + tp2

tp1 = (1, 2)
tp2 = (3, 4)

concatenated_tuple =
tuple(tp1..., tp2...)

#or

(tp1..., tp2...)
Methods -- count() Returns the number of times

a specified value occurs in a tuple.

index() Searches the tuple for a
specified value, returning its

position.

--

Comparison/Relational operators

R Python Julia Programming
== equal to
!= different from
> greater than
< smaller than
>= greater or equal to
<= smaller or equal to

== equal to
!= different from
> greater than
< smaller than
>= greater than or equal to
<= smaller than or equal to

== equality
!= inequality
< less than
<= less than or equal to
> greater than
>= greater than or equal to

Assignment Operators

R Python Julia Programming
a <- 3

a <<- 3

a = 3

 Same as…
= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
//= x //= 3 x = x // 3
**= x **= 3 x = x ** 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
^= x ^= 3 x = x ^ 3
>>= x >>= 3 x = x >> 3
<<= x <<= 3 x = x << 3

a = 5

Identity Operators

R Python Julia Programming
== (Equality): Tests if two objects
have the same values.

!= (Inequality): Tests if two objects
have different values.

is Returns True if both variables
are the same object.

is not Returns True if both
variables are not the same object.

=== (Identity Equality): Tests if two
objects or values have the same
identity.

!== (Identity Inequality): Tests if
two objects or values have different
identities.

Membership Operators

R Python Julia Programming
%in% Find out if an element belongs
to a vector.

in Returns True if a sequence with
the specified value is present in the
object.

not in Returns True if a
sequence with the specified value is
not present in the object.

in Tests if an element is present in
a collection.

!in Tests if an element is not
present in a collection.

Bitwise operators

R Python Julia Programming
-- & AND Sets each bit to 1 if

both bits are 1 x & y
| OR Sets each bit to 1 if one
of two bits is 1 x | y
^ XOR Sets each bit to 1 if
only one of two bits is 1 x ^ y
~ NOT Inverts all the bits
 ~x
<< Zero fill left shift Shift
left by pushing zeros in from the
right and let the leftmost bits fall
off x << 2
>> Signed right shift Shift
right by pushing copies of the
leftmost bit in from the left, and
let the rightmost bits fall off x
>> 2

~x bitwise not
x & y bitwise and
x | y bitwise or
x ⊻ y bitwise xor (exclusive or)
x ⊼ y bitwise nand (not and)
x ⊽ y bitwise nor (not or)
x >>> y logical shift right
x >> y arithmetic shift right
x << y logical/arithmetic shift
left

Logical operators

R Python Julia Programming
& AND – Vectorized version.
Compares two vectors returning a
vector of TRUE and FALSE.

&& AND – Non-vectorized version.
Compares the first value of each
vector returning one logical value.
| OR – Vectorized version.
Compares two vectors returning a
vector of TRUE and FALSE.

and Returns True if both statements
are true.

or Returns True if one of the
statements is true.

not Reverse the result, returns
False if the result is true.

!x negation
x && y short-circuiting and
x || y short-circuiting or

|| OR – Non-vectorized version.
Compares the first value of each
vector returning one logical value.
! NOT - Returns a unique logical
value or a vector of TRUE/FALSE.
xor XOR - Returns the value TRUE if
both entry values are different and
returns FALSE if the values are
equal.

Arithmetic operators

R Python Julia Programming
+ Addition x + y
- Subtraction x - y
* Multiplication x * y
/ Division x / y
^ Exponent x ^ y
%% Modulus (Remainder from
division) x %% y
%/% Integer Division x%/%y

+ Addition x + y
- Subtraction x - y
* Multiplication x * y
/ Division x / y
% Modulus x % y
** Exponentiation x ** y
// Floor division x // y

+x the identity operation
-x maps values to their additive
inverses
x + y performs addition
x - y performs subtraction
x * y performs multiplication
x / y performs division
x ÷ y divide x / y, truncated to
an integer
x \ y equivalent to y / x
x ^ y raises x to the yth power
x % y equivalent to rem(x,y)

Create functions

R Python Julia Programming
f <- function(x, y) {
 x + y
}

def f(x, y):
 print(x + y)

function f(x,y)
 x + y
 end
f (generic function with 1 method)

or…

f(x,y) = x + y
f (generic function with 1 method)

Control Structures and Loops

 R Python Julia Programming
for for (i in 1:10)

{
 statement
}

for iterator_var in sequence:
 statements(s)

Example:
n = 4
for i in range(0, n):
 print(i)

for iterator in range
 statements(s)
end

Example:
for i in 1:10
 println(i)
end

while while (condition)
{
 statement
}

while expression:
 statement(s)

Example:
i = 1
while i < 6:
 print(i)
 i += 1

while condition
 # Code block to be executed
End

Example:
while i <= 3
 println(i)
 global i += 1
 end

Repeat repeat
{
 statement

 if(condition)
 {
 break
 }
}

-- --

If else if (condition) {
 # Code block executed when
condition is true
} else {

if condition:
 # Code block executed when
condition is true
else:

if condition
 # Code block executed when
condition is true
else

 # Code block executed when
condition is false
}

Example:
x <- 10

if (x > 0) {
 print("x is positive")
} else if (x < 0) {
 print("x is negative")
} else {
 print("x is zero")
}

 # Code block executed when
condition is false

Example:
x = 10

if x > 0:
 print("x is positive")
else:
 print("x is non-positive")

 # Code block executed when
condition is false
end

Example:
if x < y
 println("x is less than y")
elseif x > y
 println("x is greater than
y")
else
 println("x is equal to y")
end

Useful links

R

https://www.w3schools.com/r/default.asp

Julia

https://docs.julialang.org/en/v1/

https://www.datacamp.com/cheat-sheet/julia-basics-cheat-sheet

https://cheatsheet.juliadocs.org/

https://julia.school/julia/

Python

https://www.w3schools.com/python/default.asp

https://docs.python.org/3/contents.html

